Compressive sensing and semi-supervised feature learning using a D-Wave One

Dr. Geordie Rose

Founder and CTO, D-Wave 10:15AM Friday January 20th 2012 @ NASA-Ames

The evolution of an idea

The USC – Lockheed Martin Quantum Computing Center

"... the possibility of solving some of the world's most complex optimization and machine learning problems."

USC Viterbi Dean Yannis C. Yortsos

... quantum computers ... can solve problems whose solution will never be feasible on a conventional computer.

Quantum computing for everyone Michael Nielsen (2008)

http://michaelnielsen.org/blog/quantum-computing-for-everyone/

Someday, perhaps soon, we will build a machine that will be able to perform the functions of a human mind, a thinking machine.

The Connection Machine Danny Hillis (1985)

... if you were to have a working quantum computer today, the business of doing machine learning would entirely change... quantum computing might be the missing link that brings true human level intelligence to machines.

Hartmut Neven (2007)

http://www.youtube.com/watch?v=I56UugZ_8DI

There's a fascinating hypothesis that a lot of human perception ... can be explained by a single learning algorithm.

Unsupervised Feature Learning and Deep Learning Andrew Ng (2011)

http://www.youtube.com/watch?v=I56UugZ 8DI

SIFT, Spin image, HoG, RIFT, Textons, GLOH, Gabor Wavelets

Spectrogram, MFCC, Flux, ZCR, Rolloff

Bag of words, Parser features, NER/SRL, Stemming, Anaphora, POS tagging, WordNet features

Learning features: images

Warm-up: how may bits does it take to download this highly compelling movie from Netflix?

Option 1.

Send all the bits for all eight images – 80x112x3x8 x 8 = 1,720,320 bits

Option 2.

Send one picture, plus instructions that there are eight - 80x112x3x8 + 8 = 215,048 bits

Option 2.

Send one picture, plus instructions that there are eight - 80x112x3x8 + 8 = 215,048 bits

Question:

Is the equality below:

- □ **Obvious**
- □ Deep

3

Question:

Is the equality below:

- **⊠** Obvious
- □ Deep

What if our 'video' is more interesting?

- How many features do we need to represent images from the world around us?
- How do we find them?

One feature

Like an "average"

Feature Dictionary ———

One feature per image

Guarantee of perfect reconstruction

Feature Dictionary

MANY NATURAL SIGNALS ARE SPARSE OR COMPRESSIBLE IN THE SENSE THAT THEY HAVE CONCISE REPRESENTATIONS WHEN EXPRESSED IN THE PROPER BASIS.

An Introduction to compressed sampling

IEEE Signal Processing Magazine 21 March 2008

Two features

A little better!

Feature Dictionary

Four features

Better still...

Feature Dictionary

Twenty features

Better still...

Feature Dictionary —

Forty features

Near perfect reconstruction of a real 256 image movie

Feature Dictionary ———

Not just apples

Another 20-element dictionary for a 256-image movie

Feature Dictionary ——

Not just apples

Another 20-element dictionary for a 256-image movie

Feature Dictionary -----

Framework easily handles combination of labeled and unlabeled data

{Geordie, NLTK, Mary, Suz, Apple, Banana, Pen, MukMuk}

Framework easily handles combination of labeled and unlabeled data

Just append label data [+1, -1, -1, -1, -1, -1, -1] to image data vector!

{Geordie, NLTK, Mary, Suz, Apple, Banana, Pen, MukMuk}

Eight categories, 128 images from each

64 labeled, 64 unlabeled Learn 10 features for a 1,024-image movie

Feature Dictionary —

Feature Dictionary —

(Extremely hard) optimization problem!

Find \overrightarrow{D}_m and \overrightarrow{w}_i that minimize the difference between ground truth and reconstructions

$$\overrightarrow{D}_1$$
 \overrightarrow{D}_2 \overrightarrow{D}_3 \overrightarrow{D}_4 \overrightarrow{D}_5 \overrightarrow{D}_6 \overrightarrow{D}_7 \overrightarrow{D}_8 \overrightarrow{D}_9

$$\vec{D}_3$$

$$\vec{D}_4$$

$$\vec{D}_5$$

$$\vec{D}_6$$

$$\vec{D}_7$$

$$\vec{D}_8$$

$$\vec{D}_9$$

$$ec{D}_{10}$$

$$\vec{I}_j = \sum_{m=1}^K \vec{D}_m \vec{w}_j$$

$$\vec{w}_i = [0,1,0,1,0,0,1,0,0,0]$$

Once you've learned your features...

- 1. Assign multiple labels to new objects
- 2. Anomaly detection
- 3. Generative mode assign an object to a new label set
- 4. Use features as inputs to learning algorithms
- 5. Objects can have multiple data types seamlessly included at the same time e.g. image + speech + text + category labels

Unsupervised feature learning: learn a sparse representation of all images of interest; this is lossless / reversible compression

Generative mode: Given a label set, produce a compressed bit string / image, assuming that the label set defines a meaningful space from which samples can be generated that are instances of the label choices

Do androids dream of electric sheep?

Generative mode – assign an object to a new label set Think of this as "the inverse of classification"

Thanks!

rose@dwavesys.com